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Abstract

Pell-Abel equation is a functional equation of the form P2 − DQ2
= 1, with

a given polynomial D free of squares and unknown polynomials P and Q. We
show that the space of Pell-Abel equations with the fixed degrees of D and of a
primitive solution P is a complex manifold. We describe its connected components
by an efficiently computable invariant. Moreover, we give various applications of
this result, including torsion pairs on hyperelliptic curves, Hurwitz spaces and the
description of the connected components of the space of primitive k-differentials with
a unique zero on genus 2 Riemann surfaces.

1 Introduction

The reincarnation of the Diophantine equation of Pell in the realm of polynomials was
introduced and investigated by N. H. Abel in [Abe26]. Since then the equation

P2(x) − D(x)Q2(x) = 1 (PA)

is known as Pell-Abel equation. Here P(x) and Q(x) are unknown polynomials of one
variable and D(x) :=

∏

e∈E(x − e) is a given degree deg D = |E| := 2g + 2 monic complex
polynomial without multiple roots. For a generic choice of D, the Pell-Abel equation
only admits the trivial solutions (P,Q) = (±1, 0). If an equation has a nontrivial solution
then the set of solutions is infinite and contains a unique, up to sign, polynomial with
minimal degree n := deg P > 0. This solution is called primitive. It generates the other
solutions P via composition with the classical Chebyshev polynomials and change of
sign. This is discussed in more details in Section 2.

Let us fix g ≥ 0 and n ≥ 1 and consider the set ˜A
n

g of monic polynomials D of
degree deg D = 2g + 2 whose associated Pell-Abel equations have a primitive solution of
degree n. The affine group x 7→ ax + b with a ∈ C∗ and b ∈ C acts on the set of monic
polynomials as D(x) 7→ a− deg DD(ax + b). This action does not affect the degree n of the
primitive solution of Equation (PA) and our main object of study is the quotient A

n
g of

the set ˜A
n

g by this group action. More precisely, we have the following result proved in
Section 3.
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Theorem 1.1. The set ˜A
n

g is invariant under the action of the affine group. The quotient A n
g

is a smooth orbifold of complex dimension g.

A first reading about orbifolds is Section 13 of [Thu79] and in the first approximation
we can think of them as manifolds.

The main result of this paper consists in classification of the connected components
of the spaces A

n
g . A weaker version was announced in [BG23], which contains a survey

of the proof given below.
We first introduce the degree partition invariant of a on element D ∈ A

n
g . Given

a primitive solution P of Equation (PA), its value P(e) = ±1 at any zero e ∈ E of D.
Therefore the set E is decomposed into two subsets E

± and we obtain the partition of
the degree of D:

|E| = 2g + 2 = |E+| + |E−|.

The choice of the other primitive solution −P interchanges indexes ± in the summands,
but the unordered partition remains the same. The degree partition invariant of D is the
unordered pair of nonnegative integers (|E−|, |E+|).

Theorem 1.2. Let m = min(g, n−g− 1) and [·] denotes the integer part. Equation (PA) has
no primitive solutions of degree n < g + 1 or n > 1 when g = 0. Otherwise, the number of

components a(g, n) of A
n

g is equal to [m/2]+ 1 if n+g is odd and [(m+ 1)/2] if n+g is even.

Moreover, each component is labelled by a unique degree partition (|E−|, |E+|) satisfying

1. |E±| > 0,

2. |E±| ≤ n,

3. the parity of |E±| is equal to the parity of n.

This theorem has two trivial cases. When n < g + 1, the degree of P2 is strictly
less than the degree of DQ2 if the solution (P,Q) is not trivial. When g = 0, any
Equation (PA) is brought to the case D(x) = x2 − 1 by a linear change of variable. It
admits the (primitive) solution (P,Q) = (x, 1) of degree n = 1. All the other cases are far
less trivial. They are based on a pictorial calculus representing the flat structure on the
Riemann surface that we associate to each Pell-Abel equation.

First, in Section 2, we associate to every (marked) hyperelliptic Riemann surface a
distinguished abelian differential. Using it, we propose a solvability criterion for the
Pell-Abel equation in terms of the periods of this differential. Then in Section 4 we
elaborate the graphical technique which allows to control the periods of the distinguished
differential when we deform the polynomial D. The upper bound for the number of
connected components is obtained in Section 5, where we bring the graph of an arbitrary
solvable Pell-Abel equation to one of standard forms. Finally, we discuss the degree
partition invariant in Section 6. We show that it appears in the context of braids and
that all standard forms have different invariants, hence lie in different components.
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Applications. The Pell-Abel equation is inherently related to many problems in various
branches of mathematics. To cite some, it appears in the reduction of abelian integrals
[Abe26, Che48, BE01], Poncelet porism [BZ13], elliptic billiards [DR19], approximation
theory [SY92, Peh93, Bog12, Bog02], spectral theory for infinite Jacobi matrices [SY92],
algebraic geometry including the study of Frobenius endomorphisms [Ser19], complex
affine surfaces [Kol20], Teichmüller curves [McM06], etc.

Now we give some examples where our main result may be directly translated or
applied.

(A) Extremal polynomials. Shabat polynomials, i.e. polynomials with just two finite
critical values, are rigid objects whereas many applications require maps with similar
properties, but more flexible. Those were defined in [Bog02, Bog12] under the name of
g-extremal polynomials and in [Zan14, Section 12.2.2] or [BCZ22, Section 2] as almost

Belyi maps. A typical g-extremal polynomial P(x) has only simple critical points with
almost all critical values equal to ±1 and exactly g exceptional critical values not lying
in this set. In general we allow merging the critical points, and the extremality weight g

defined e.g. in [Bog02, Bog12] takes into account the confluent critical points, even if the
appropriate critical value lies in the exceptional set {±1}.

A practical interest in g-extremal polynomials comes from some problems of uniform
Chebyshev optimisation: the vast majority of arising alternation points for the solution
will be the critical ones and with the values in the two-element set: ± the value of
approximation error. After re-normalization they become g-extremal with some small
value of parameter g. Classical examples are Chebyshev and Zolotarev polynomials for
g = 0 and g = 1 respectively.

Any polynomial P is a solution of the unique Pell-Abel equation: just extract the
square-free part D in the polynomial P2−1. A simple calculation shows that deg D = 2g+2
where g is the extremality number of the polynomial P. The set of g-extremal complex
polynomials of given degree N ≥ g + 1 is a smooth complex manifold of dimension
g + 2 and the number of its components may be counted with the use of our main
theorem. Indeed, every g-extremal polynomial PN(x) as a solution of Pell-Abel equation
has the unique representation of the kind ±Tm ◦Pn(x), where Tm is the classical degree m

Chebyshev polynomial and Pn is the primitive solution of the same Pell-Abel equation
(see Theorem 2.1). One can show that the inverse polynomials ±PN lie in the same
component of the set of g-extremal polynomials exactly when the corresponding degree
partition has equal parts: |E±| = g + 1. Eventually, we arrive at

Corollary 1.3. The deformation space of g-extremal polynomials of the given degree N

consists of one or two components when g = 0 and N is respectively odd or even. For

g > 0 the same number is equal to

∑

n|N
2a(g, n) − #

{

n ∈ N :
N

n
is odd and n − g = 1, 3, 5, . . .

}

, (1)

where a(g, n) is the number of components of A
n

g .

(B) Hurwitz spaces. A typical g-extremal polynomial of degree N with different
exceptional critical values gives us a covering of a sphere by another sphere which is
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branched in a specific way. The cyclic type of monodromy above g + 2 finite critical
points is described by the passport (see [LZ04] for definitions)

[2A1N−2A; 2B1N−2B; g × 211N−2]

with integers 2 ≤ A, B ≤ N/2 satisfying the planarity (or Riemann-Hurwitz) condition
A + B + g = N − 1. Again, the polynomials PN realizing the above passport after their
re-normalization have the representation as the composition of classical Chebyshev poly-
nomial Tm and a primitive solution Pn of some Pell-Abel equation. We should distinguish
between two cases: for even m the maximum of 2A, 2B equals to N and the minimum
is equal to N − 2g − 2; for odd m the positive numbers N − 2A and N − 2B make up the
degree partition for Pn.

Corollary 1.4. The Hurwitz space of degree N polynomials with the above monodromy

passport has the following number of components:

1. The number of integer n such that N/n is odd and n ≥ N − 2min(A, B), when

N > 2max(A, B).

2. The sum
∑

n a(g, n) over integer n such that N/n is even, when N = 2max(A, B).

Note that this generalises works with similar passports as in [Waj96, LO08, MP18]
and partial results on these passports in [KZ96] and in [LZ04, Table 5.1]. Moreover, the
use of abelian differentials to study Hurwitz spaces already appeared in [Mul22].

(C) Torsion points. Given a genus g hyperelliptic Riemann surface M with hy-
perelliptic involution J and a non-Weierstraß marked point p. We can ask when the
Abel-Jacobi image of the divisor p− Jp has some finite order n in the Jacobian. Equiva-
lently we can ask about the existence of a function f ∈ C(M) whose divisor is n(p − Jp).
This problem is equivalent to solvability of some Pell-Abel equation which we explain in
Remark 2.2 of Section 2. Therefore, we claim that:

Corollary 1.5. The number of connected components of the space of hyperelliptic Rie-

mann surfaces M of genus g with a primitive n-torsion pair of points conjugated by the

hyperelliptic involution is equal to a(g, n). The degree partition (|E−|, |E+|) is the number

of e ∈ E such that f (e, 0) = ±1 for suitable normalization of this function in the algebraic

model (2) of M = M(E).

(D) Strata of k-differentials. A more elaborated application is the following result
proved in Section 7, where basic definitions are recalled.

Corollary 1.6. The moduli space of primitive k-differentials with a unique zero of order 2k

on genus 2 Riemann surfaces ΩkM2(2k)prim is empty for k = 2, connected for k = 1, 3 or

k ≥ 4 even and has two connected components for k ≥ 5 odd. Moreover, the component

of A
n

g of degree partition invariant (1, 5), resp. (3, 3), corresponds to the component of

odd, resp. even, parity of ΩkM2(2k)prim.

The proof of the second part of the corollary is given in Proposition 7.2 by studying
the torsion packets modulo the Weierstraß points, which may be of independent interest.
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2 Solvability of Pell-Abel equation

Fix a polynomial D of degree 2g+ 2 whose roots are all simple. The union of these roots
is denoted by E. Some conditions on D have to be imposed [Abe26, Che48, Mal02, SY92]
to guarantee the existence of a nontrivial solution of Pell-Abel Equation (PA), that is with
n := deg P > 0. The criterion given by Abel is the periodicity of the continued fraction
for the square root of D (see [Pla14] and the references therein for a more modern
presentation). We will use a transcendental criterion coming from [Bog02, Bog12] which
is much easier to handle with.

We associate to the polynomial D(x) =
∏

e∈E(x − e) the affine genus g hyperelliptic
Riemann surface

M = M(E) :=
{

(x,w) ∈ C2 : w2
= D(x)

}

. (2)

The latter admits the natural two point compactification

M∞ := M ∪ {∞±} (3)

where the two points ∞± at infinity are distinguished by the limit value of the function
w−1xg+1(∞±) = ±1. The added points are interchanged by the hyperelliptic involution
J(x,w) = (x,−w) acting on M∞. In what follows, we will suppose that the points ∞± are
marked on the Riemann surface M∞.

The Riemann surface M∞ associated to D bears a unique meromorphic differential
of the third kind

dη = dηM = (xg
+ ag−1x

g−1
+ · · · + a0)w−1dx (4)

having two simple poles at infinity with residues Res dη|∞± := ∓1 and purely imagi-
nary periods (see Proposition 3.4 of [GK10]). This differential will be referred as the
distinguished differential.

Note that the distinguished differential is odd with respect to hyperelliptic involution:
J∗dη = −dη. In particular, there is a unique quadratic differential (dη)2 on the Riemann
sphere such that dη is the root of the pull-back of (dη)2 on M∞ (or dη is the canonical
cover of (dη)2 in the terminology of [BCG+19]). This quadratic differential is referred as
the distinguished quadratic differential.

We give the criterion of solvability of Equation (PA) in terms of the distinguished
differential.

Theorem 2.1. Given n ≥ 1, Equation (PA) admits a nontrivial solution with deg P = n if

and only if all the periods of dηM on M are contained in the lattice 2πiZ/n.
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If this condition is satisfied, then the solution of Pell-Abel equation is given, up to sign,

by:

P(x) = cos

(

ni

∫ (x,w)

(e,0)

dηM

)

and Q(x) = iw−1 sin

(

ni

∫ (x,w)

(e,0)

dηM

)

. (5)

Proof. If Equation (PA) has a nontrivial solution (P,Q) then the (Akhiezer) rational
function f (x,w) = P(x) + wQ(x) ∈ C(M∞) satisfies f (x,−w) = 1/ f (x,w). Hence it has
a unique pole at ∞+ and a unique zero at ∞−, both of multiplicity n. In that case,
the distinguished differential is equal to dη = n−1d log( f (x,w)). The fact that log is
2iπ-periodic implies that the periods of dη lie in 2iπZ/n.

Conversely, the lattice condition

∫

H1(M,Z)

dηM ⊂ 2πiZ/n (6)

and the fact that J∗dη = −dη imply that the functions in the right hand sides of Equa-
tion (5) are polynomials of degrees n and n − g − 1 respectively. Now the Pythagorean
theorem sin2(z) + cos2(z) = 1 for z ∈ C reads as Pell-Abel equation. �

Remark 2.2. 1) The lattice condition as the criterion for the solvability of Pell-Abel
equation first appeared seemingly in approximation theory and it is related to Chebyshev
approach to least deviation problems [Zol77, Bog12]. Some particular cases may be found
in [Rob64, SY92, Peh93, Bog99, Bog02].

2) Given a polynomial D, the set of all solutions of Equation (PA) admits a group
structure which mimics multiplication of Akhiezer functions:

(P,Q) ∗ (p, q) = (Pp + DQq, Pq + Qp). (7)

The trivial solution (1, 0) is the unit of this group and the inverse of (P,Q) is (P,−Q).
It follows from the trigonometric representation of solutions given in Equation (5), that
the primitive solution generates all higher degree solutions via the composition with the
classical Chebyshev polynomial and possibly a change of sign.

3) Note that if Equation (PA) has a non trivial solution (P,Q) of degree n, then the
Akhiezer function f (x,w) = P(x) + wQ(x) ∈ C(M∞) has divisor n∞+ − n∞−. Hence the
divisor ∞+ − ∞− is of primitive n-torsion if and only if Equation (PA) has a primitive
solution of degree n. Corollary 1.5 follows readily from Theorem 1.2 using this remark.

3 Space of Pell-Abel equations

Let us study the constraints imposed by the lattice condition (6) of Theorem 2.1. Consider
the space H̃g of complex monic square free polynomials D(x) of degree 2g+ 2. It may be
identified with the space C2g+2 with removed discriminant set. The disjoint zeros e ∈ E

may serve as local coordinates of this complex manifold. The polynomials such that the
Pell-Abel Equation (PA) has a primitive solution of degree n ≥ 1 form a subset ˜A

n
g of H̃g.

We show it is a manifold.
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Theorem 3.1. The set of polynomials ˜A
n

g is either empty or a smooth complex manifold

of pure dimension g + 2.

The proof relies on the fact that the set ˜A
n

g is given by the polynomials D(x) such
that the associated distinguished differential dη on M satisfies the lattice condition (6)
of Theorem 2.1.

Proof. Consider the space of non-normalised abelian differentials

dη(B,E) :=

(

xg
+

∑g−1
s=0 bs xs

)

√

∏2g+2
j=1 (x − e j)

dx ,

with coordinates (B,E) := (b0, . . . , bg−1; e1, . . . , e2g+2). This is a natural fibration over the
space H̃g.

Let us fix 2g+ 1 closed paths on the given twice punctured surface M = M(E0) which
represent a basis of the homology group H1(M,Z) (an extra nontrivial cycle encompasses
a puncture). By disturbing the loops within their homology class we suppose that the
projections C0,C1, . . . ,C2g of those contours to the x-plane are disjoint from the branching
set E0. Therefore for all E ∈ H̃g in a small vicinity of E0 the lifts of those contours to
the surface M(E) represent the basis of the first homology group. We denote by C0 the
cycle encompassing a puncture at infinity.

We also fix g + 2 paths Ds on the complex plane disjoint from the branching set E0,
starting at a common point p0 and ending at arbitrarily chosen but distinct points ps,
for s = 1, . . . , g + 2. Finally, we fix a loop D0 lifting to an open path on M(E0) and
connecting two preimages of p0 on the surface. This set of data provides us with 3g + 2
locally defined holomorphic functions:

π j(B,E) :=

∫

C j

dη(B,E), for j = 1, 2, . . . , 2g , and

τs(B,E) :=

∫

Ds

dη(B,E) +
1

2

∫

D0

dη(B,E), for s = 1, 2, . . . , g + 2 .

If the coordinate change (B,E) → (π, τ) is degenerate at the point (B0,E0), there
exists a tangent vector

∑

j β j
∂
∂b j
+

∑

s ǫs
∂
∂es

annihilating all these functions at this point
of the space of differentials. This means that the differential

dζ :=
1

2

2g+2
∑

s=1

ǫs
dηM

x − es

+

g−1
∑

j=0

β j

x jdx

w

determined by the tangent vector satisfies the equations
∫

Cs

dζ = 0, for all s = 1, . . . , 2g, and













∫

D j

+
1

2

∫

D0













dζ = 0, for all j = 1, . . . , g + 2 .
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All the periods of the dζ, both polar and cyclic, vanish and therefore its integral is a
single valued function on the surface M(E0):

ζ(P) :=
1

2

(∫ P

P0

+

∫ P

JP0

)

dζ , with ζ(P0) = p0. (8)

The differential dζ is odd with respect to the hyperelliptic involution J and so is its
integral ζ(P) for the chosen constant of integration. The only possible singularities of
the meromorphic function ζ(P) are simple poles at the branchpoints of M, whose number
is not greater than 2g + 2. It is strictly less than the 2g + 4 zeros of ζ(P), which cover
all the endpoints x = ps of the integration paths Ds in formulas above. Hence dζ and
therefore the annihilating tangent vector vanish.

We conclude that the set locally defined by fixing the values of all periods of the
differential dη(B,E) is a smooth complex analytic manifold of dimension g + 2 in the
fibration over the space H̃g. It remains to show that it does not spoil under the projection
to the base H̃g. If the isoperiodic manifold had two points gluing under the projection
or it had a vertical tangent, that would mean the existence of a non zero holomorphic
differential with vanishing periods. The latter is prohibited by the Riemann bilinear
relations. �

Note that isoperiodic (or Pell-Abel) manifolds ˜A
n

g are invariant under the action the
1-dimensional affine group E → aE + b with (a, b) ∈ C∗ × C. Indeed, this transformation
does not change the conformal structure on the Riemann surface with the marked point
at infinity. Hence, the distinguished differential and all its periods survive under this
map.

Corollary 3.2. The quotient A
n

g of ˜A
n

g by the action of the affine group is a smooth

orbifold of complex dimension g.

Proof. This follows directly from Theorem 3.1 and the fact that the action on the affine
group on any set of 2g + 2 points in the plane has finite stabilizer. �

4 Pictorial representation

In this section we introduce a pictorial representation for the description of the moduli
space of hyperelliptic Riemann surfaces M∞ carrying a couple of marked points ∞±
conjugated by the hyperelliptic involution. To such a Riemann surface we associate the
planar graph whose edges are critical leaves of the vertical and horizontal foliations of
the distinguished quadratic differential (dηM)2 introduced in Section 2. We will totally
characterize such graphs and each of them will come from a unique, up to the action of
the affine group, pointed Riemann surface M∞.

Originally this graphic language was designed in [Bog03, Bog12] for the theory of
real extremal polynomials, where the problem of Riemann surfaces deformation with
control of the periods exists too. It turned out to be very useful in the investigation of
the global periods map, in particular for its image [Bog03] and study of the topology of
its fibers [Bog19].
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4.1 Global width function

Let M∞ be a hyperelliptic Riemann surface with marked points ∞± and dη be its distin-
guished differential. Given a branch point e ∈ E, we define the width function W : C→ R+
by

W(x) =

∣

∣

∣

∣

∣

∣

Re

∫ (x,w)

(e,0)

dη

∣

∣

∣

∣

∣

∣

. (9)

One immediately checks that the normalization conditions of the distinguished differen-
tial imply that the width function satisfies the following properties:

i) W is a well-defined single valued function on the plane.

ii) W is harmonic outside its zero set Γ := {x ∈ C : W(x) = 0}.

iii) W has a logarithmic pole at infinity.

iv) W vanishes at each branch point e′ ∈ E.

We only comment on the Property iv). Since dη is odd with respect to hyperelliptic
involution, the value W(e′) is equal to one half of the modulus of the real part of some
period of dη. Since all its periods are purely imaginary, this gives iv). Moreover, this
implies that the width function is independent on the choice of the branch point e as
initial point of integration.

4.2 Construction of the associated graph Γ(M).

Recall that a quadratic differential induces a vertical and a horizontal foliations (see
[Str84] for a detailed discussion). The level lines of the width function are the trajectories
of the vertical foliation of the distinguished quadratic differential (dη)2, while the steepest
descent lines of W(x) are its horizontal trajectories.

To any Riemann surface M we associate a weighted planar graph Γ = Γ(M) which is
a union of a ’vertical’ subgraph Γ and a ’horizontal’ subgraph Γ . The precise definition
is given below and examples of such graphs are given in Figure 1.

Definition 4.1. Let M be the hyperelliptic Riemann surface given by Equation (2). Its
associated graph Γ(M) is the weighted planar graph constructed as follows:

• The vertical edges are the unoriented arcs of the zero set of W(x) (they are segments
of the vertical foliation of (dη)2).

• The horizontal edges are the segments of the horizontal foliation of (dη)2 connect-
ing saddle points of the function W to the zero level set of W (and may occasionally
hit other saddle points on its path). The horizontal edges are oriented with respect
to the growth of W(x).

• The vertices of the graph Γ are the union of the finite points of the divisor of (dη)2

and the points in Γ ∩ Γ , i.e. projections of the saddle points of W to its zero set
along the horizontal leaves.
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• Each edge R of the graph is equipped with its length h(R) in the metric ds := |dη|
induced by (dη)2 .

Convention 4.2. In the figures, we draw the vertical edges of the canonical graph with
double lines. The horizontal edges are represented by single line with an arrow showing
their orientation. The weight of a vertical edge R is denoted by h(R). We usually do not
put the values of the horizontal weights on the figures.

−1

−1

−1

−1

2
0 0

Figure 1: Typical graphs associated to Riemann surfaces of genera 1 and 2 are shown
without their weights. For every vertex V of the first graph, the value of ord(V) is given.

From the local behaviour of the trajectories one immediately checks that for any
vertex V ∈ Γ its multiplicity in the divisor of (dη)2 is given by

ord(V) := d (V) + 2din(V) − 2 , (10)

where d is the degree of the vertex with respect to the vertical edges and din is the number
of incoming horizontal edges. The branch points of M correspond to the vertices V with
the odd value of ord(V) and automatically lie on the vertical part of the graph Γ. One
can check it for the graphs represented in Figure 1.

4.3 Admissible graphs

The graphs Γ(M) associated to hyperelliptic Riemann surfaces by the previous construc-
tion can be described in an axiomatic way. There are five conditions, three on its
topology (T) and two on its weights (W).

Theorem 4.3. A weighted planar graph Γ considered as a topological object (up to isopoty

of the plane) is associated to a hyperelliptic Riemann surface M if and only if the following

five conditions are satisfied.

(T1) The graph Γ is a tree.

(T2) The horizontal edges leaving the same vertex are separated by a vertical or an in-

coming edge.
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(T3) If ord(V) = 0 then V ∈ Γ ∩ Γ .

(W1) The width function increases along oriented edges and W(V) = 0 if V lies on the

vertical part of the graph.

(W2) The weights of vertical edges are positive and their total sum is π.

Given a graph Γ satisfying all five conditions, the Riemann surface M whose associated

graph is Γ is unique up to the action of the linear maps Aff(1,C) on the branching set E.

Remark 4.4. These conditions imply some basic restrictions on the graphs Γ(M). For
instance, there are no pendent horizontal edges like r✲ or r✛ . The first case is
prohibited by (T2), while the second one is prohibited by (T3).

Proof. We give a sketch of the proof for completeness and the reader can look at [Bog03,
Bog12] for a more detailed description.

Constraints on associated graph. We say a few words about the genesis of properties
(T1), (T2), (W2). The properties (T3) and (W1) directly follow from the definition of the
graph Γ.

Property (T1). Suppose that the complement C \ Γ(M) of the graph is not connected.
Let us calculate the Dirichlet integral of the width function in a bounded component Ω
of the complement by means of Green’s formula:

∫

Ω

|grad W(x)|2dΩ =
∫

∂Ω

W(x)
∂W

∂n
ds .

The function W vanishes on the vertical parts of the boundary while its normal derivative
vanishes at the horizontal parts of ∂Ω. This would imply that W is constant. Now suppose
that the graph has several components. Summing up the values of ord(V) over all its
vertices, we get by Equation (10) that

2♯{vertical edges} + 2♯{horizontal edges} − 2♯{vertices} = −2♯{components of Γ} .

This value equals to the degree of the divisor of (dηM)2 on the sphere (i.e. -4) plus the
order of its pole at infinity (i.e. 2). Hence, the graph Γ has just one component and it is
a single tree.

Property (T2). Let V be a vertex of Γ such that W(V) > 0. This is a saddle point of
the width function, the meeting point of several alternating “ridges” and “valleys”. A
horizontal edge comes into V from each valley by definition. The outgoing edge (if any)
goes along the ridge, so any two of them are separated. Same is true for W(V) = 0 with
vertical edges coming from each “valley”.
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Figure 2: The extensions of the graphs of figure 1.

Property (W2). The integral of (dη)2 along the boundary of the plane cut along Γ
equals 2i times the sum of the weights of all vertical edges. The integration path may be
contracted to the path encompassing the pole at infinity, hence by the residue theorem
is 2iπ.

From the graph to the Riemann surface. The Riemann surface M may be glued
from a finite number of stripes in a way determined by combinatorics and weights of the
graph. Below we briefly describe the procedure.

Given a planar graph satisfying the above five conditions, we extend it by drawing
d (V) − dout(V) + din(V) ≥ 0 outgoing horizontal arcs which connect each vertex V to
infinity and are disjoint except possibly at their endpoints. For each vertex we require
that all the outgoing edges of this extended graph Ext Γ, old and new, alternate with
the incident edges of other types: incoming or vertical, so that the graph ExtΓ satisfies
Property (T2). Since the original graph is a tree, the extended graph is unique up to
isotopy of the plane. Typical examples for g = 1 and g = 2 are given at Figure 2.

From the topological viewpoint all the components of the complement to the extended
graph in the plane have the same structure. They are 2-cells bounded by exactly one
vertical edge R and two finite chains of horizontal edges attached to the endpoints of R,
all pointing away from the vertical edge and meeting at infinity. For each cell we denote
by h(R) the weight of the corresponding vertical edge and define the half-strip for h = h(R)

by
Σ(h) = {η ∈ C : Re η > 0 and 0 < Im η < h} .

We glue these 2♯{vertical edges} half-strips by translations along the horizontal edges
and rotation of angle π along the vertical edges as indicated by the graph ExtΓ. This flat
structure on the Riemann sphere has 2g+2 singularities of odd order and is well defined
up to the action of the affine group. The Riemann surface M is defined to be the double
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cover ramified at these points. The distinguished quadratic differential on the Riemann
sphere is the one whose flat structure has been just defined. �

Remark 4.5. 1) The axiomatic description of the graphs Γ appearing as associated graphs
of Riemann surfaces, including the five constraints (T1,T2,T3,W1,W2) and the realization
theorem, were first established for the Riemann surfaces admitting an anticonformal
involution (i.e. reflection) in [Bog12, Bog03]. The purely complex case is somewhat
simpler as we should not keep in mind this mirror symmetry and arising additional
topolological invariants, splitting of homology, etc.

2) An interesting enumerative problem related to associated graphs arises: compute
the number of (stable) combinatorial graphs Γ associated to the Riemann surfaces M of
genus g. Same holds for real curves with given genus and the number of real ovals.

4.4 Period mapping in terms of graphs

In this section we explain how to compute the periods of the distinguished differential
from a graph satisfying the conditions of Theorem 4.3.

4.4.1 Homology basis associated to a graph

Given a graph Γ = Γ(M), we associate a set of 2g + 2 cycles on the twice punctured
surface M = M∞ \ ∞± which generate its integer homology group H1(M,Z) = Z2g+1. This
set is unique if all the branchpoints are pendent (degree one) vertices of the graph which
is a generic case, see example on Figure 3.

We denote the complex plane cut along the vertical part of the graph by M+ := C \Γ .
The Riemann surface M is obtained by gluing two copies of M+ along the cuts in a
criss-cross manner.

Suppose that we travel counterclockwise along the boundary of the plane cut along
the whole graph Γ. We meet each branching point e exactly once, provided each of those
are hanging vertices of the tree. So all the branchpoints become cyclically ordered e.g.
e1, e2, . . . , e2g+1, e2g+2, e2g+3 = e1. In case there are interior branching points, some points
e ∈ E will be listed more than once and we eliminate all duplicates in an arbitrary way.
We again get a cyclic order of all the branchpoints, however not a unique one.

For j = 1, . . . , 2g + 2, let c j be any simple arc connecting point e j to e j+1 and disjoint
from the graph Γ except for its ends. We draw this arc on M+ and then C j := (Id−J)c j

is a closed loop on the surface M. Those 2g + 2 loops are represented in Figure 3. They
are linearly dependent: both sums of the loops with even/odd indexes are equal to the
same loop encircling clockwise the puncture ∞+. There are no other relations between
them:

Lemma 4.6. The cycles C1,C2, . . . ,C2g+1 make up a basis of the lattice H1(M,Z).

Proof. For every j = 1, . . . , 2g+2 consider the relative cycles D j in the relative homology
group H1(M∞, {∞±},Z) given by D j := (Id−J)d j where d j is any simple arc connecting
branch point e j to ∞+ and disjoint from the graph except for its starting point. There is
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Figure 3: Generators of the first homology group of the genus g = 2 Riemann surface
associated to the generic graph Γ.

a pairing between the above two homology groups given by the intersection index. We
compute that Ds ◦C j = 1 if s = j or s = j + 1 and is equal to 0 for all other indexes. The

determinant of the intersection matrix ||Ds ◦C j||2g+1
s, j=1 equals to 1. �

4.4.2 Period mapping for the associated homology basis

Given an admissible graph Γ, we can calculate the periods of the distinguished differ-
ential dη along the basic cycles C j introduced in Section 4.4.1. This differential may be
reconstructed from the width function as dη = 2∂W(z) on the top sheet M+. On the other
sheet it just has the opposite sign.

Lemma 4.7. The period of the distinguished differential dη along the cycle C j is

∫

C j

dη = 2i
∑

e j<R<e j+1

h(R) , (11)

where the summation is taken over all vertical edges R of Γ that appear when travelling

counterclockwise from e j to e j+1 along the bank of Γ.

Proof. Let H(z) be the harmonic conjugate to the width function W(z). It is a multivalued
function in the complement of the graph Γ: going around the graph (or equivalently, the
infinity) adds ±2π to the initial value of H(z). We have a chain of equalities:

∫

C j

dη = 2

∫

c j

dη = 2

∫

c j

d(W + iH) = 2i

∫

c j

dH . (12)

14



To obtain the last equality we used that the width function W vanishes at all the branch
points e, where the path c j starts and ends. Continuing the last equality:

∫

C j

dη = 2i
∑

e j<R<e j+1

∫

R

dH = 2i
∑

e j<R<e j+1

h(R) . (13)

Here we used Cauchy-Riemann equations

dH|R =
∂W

∂n
dl ,

where n is normal to the edge R and l is a length parameter on the edge. Hence dH

vanishes at the horizontal edges and is equal to the metric of the differential |dη| on the
vertical edges. �

Example 4.8. For the graph pictured in Figure 3, the period of dη along C1 is 2i(h1 +h3),
the period along C2 is 2i(h3 + h4 + h6) and the period along C1 + C3 + C5 equals to
2i(h1 + h3 + h6 + h7 + h5 + h4 + h2) = 2πi according to normalization (W2).

4.5 Local isoperiodic deformations

We know from Theorem 3.1 that fixing the values of periods of the distinguished dif-
ferential locally define a complex (g + 2)-dimensional submanifold, such as the ˜A

n
g , in

the moduli space H̃g. Two degrees of freedom on this manifold account for inessential
affine motions of the branching divisor which do not change the complex structure. The
remaining g complex degrees of freedom on an isoperiodic manifold may be explained
in terms of associated graphs. For simplicity we define the isoperiodic deformations for
the generic graph, general case will follow from continuity.

In the generic case the width function W has exactly g saddle points V , that is the
double zeros of (dη)2. The vicinity of each of them in the graph Γ has the appearance
pictured in Figure 4: the vertex V is the meeting point of exactly two horizontal edges
which go straight from two vertical components of the graph. Each of two nearest
neighbour nodes of V is incident to exactly two vertical edges. We label the weights
of the four mentioned nearest to V vertical edges cyclically by h1, h2, h3 and h4 as
in Figure 4. The following two modifications of weights in the neighbourhood of the
vertex V obviously do not change any period:

W(V)→ W(V) + δW; hs → hs − (−1)sδh, s = 1, 2, 3, 4, (14)

with real increments δW , δh small enough for the modified graph to obey admissibility
conditions.

We will use the deformations of this kind to bring the graph of a Riemann surface M

corresponding to Equation (PA) admitting a primitive solution of degree n to a standard
form.

15



V

h2

h4
h3

h1

δh

δh

Figure 4: Vicinity of a generic saddle point V . The horizontal segment of the graph
deformed by hs → hs − (−1)sδh with positive δh is pictured in dashed.

5 Isoperiodic deformation to graphs of standard forms

The original enumeration problem essentially belongs to algebraic geometry, however the
graph technology allows us to study it by efficient combinatorial methods. A similar
approach is used in the classification of the connected components of strata of abelian
differentials [KZ03], intersection theory on moduli spaces [Kon91, Kon92] and some
other investigations.

In this section we first introduce two standard forms of the graphs Γ(M) and secondly
present a combinatorial procedure for the isoperiodic deformation of a graph associated
to a Pell-Abel equation with a primitive solution of degree n to the standard form graph.

These standard forms may be chosen differently. For the upper bound of the number
of connected components a(g, n) we use the Two Bush standard form. For the lower
bound in Section 6.2 we will use the Linear standard from. For sake of completeness we
give an explicit isoperiodic transformation between both standard forms.

5.1 Two standard forms of graphs

Let Γ be a graph associated to a Pell-Abel equation with a primitive solution of degree n.
For convenience we rescale the weights of its vertical edges as follows:

~(R) := nh(R)/π . (15)

This rescaling allows us to work with integers instead of rational multiples of π. To
distinguish between the normalizations, we continue to call the value h(R) the weight of
the (vertical) edge R, whereas we refer to ~(R) as of its height. Note that the total height
of the vertical component of a graph is equal to n.

Definition 5.1. The linear graph Γ(s, g, n) with integer parameters g ≥ 1, n ≥ g + 1 and
s = 0, 1, . . . ,m∗ := min(g − 1, n− g − 1) is defined as follows. It has g + 1 vertical segments
connected at their endpoints by g horizontal components so that the whole graph is
embedded in a line, as represented in Figure 5. The first (g − s) vertical edges are of
height ~ = 1, they are followed by s vertical edges of height ~ = 2 and finally the height
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of the last one is ~ = n − g − s. The value of the width function at its g saddle points is
not specified as inessential.

1 1 1 2 2 n − g − s

g − s s

Figure 5: The linear graph Γ(s, g, n) for g = 5 and s = 2.

Remark 5.2. The number s of vertical edges of height ~ = 2 in the standard linear form
cannot be too large when the degree n is smaller than 2g. Indeed, otherwise the last
vertical edge will have zero or negative height. This is the reason why s is less or equal
to m∗ := min(g − 1, n − g − 1).

Remark 5.3. The linear graphs correspond to Riemann surfaces M with only real branch-
points. The solutions P(x) of corresponding Pell-Abel equations are known as multiband
Chebyshev polynomials, see [Bog99, Bog03]. In this case, the heights ~ of the vertical
segments correspond to the oscillation numbers of the Chebyshev polynomial P(x) on
the bands. In general they can take arbitrary positive integer values which sum up to
deg P = n.

Given the same set of parameters (s, g, n) as for the standard linear form Γ(s, g, n),
we introduce the Two bush standard form Γ∗(s, g, n) built as follows:

Definition 5.4. The small bush is a collection of 2(g − s) + 2 vertical edges, that we
call twigs, of equal height ~ = 1/2 all growing from the same root. The large bush is a
similar starlike graph of 2s vertical edges of height ~ = 1. The two bush graph Γ∗(s, g, n) is
obtained by gluing the root of the large bush and a vertical edge of height ~ = n−g− s−1,
called tail, to a hanging vertex of the small bush, in such a way that the whole embedded
graph admits reflection symmetry. Such graph is pictured in Figure 6.

tail of height ~ = n − g − s − 1

2s twigs of ~ = 1

2g − 2s + 2 twigs

of ~ = 1
2

reflection

symmetry

Figure 6: The two Bush graph Γ∗(s, g, n) for g = 4 and s = 2.

Note that the tail disappears when s = n − g − 1. In this case the root of the larger
bush becomes a branch point.

We will prove in Section 5.3 that these two standard forms are related to each other
in the following way:
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Lemma 5.5. The two bush graph Γ∗(s, g, n) and the linear graph Γ(s, g, n) are joined by an

isoperiodic deformation.

The two bush graphs Γ∗(s, g, n) and Γ∗(s− 1, g, n) with s > 0 and s+g+n odd are joined

by an isomorphic deformation.

The main result of this section is the following.

Theorem 5.6. Any graph Γ corresponding to a Pell-Abel equation P2(x) − D(x)Q2(x) = 1
with deg D = 2g + 2 > 2 and admitting a primitive solution of degree n > g can be

isoperiodically transformed into a two bush graph Γ∗(s, g, n) for some s = 0, 1, . . . ,m∗,
where m∗ := min(g − 1, n − g − 1).

Corollary 5.7. The number of connected components a(g, n) of A
n

g for n > g and g > 0
is at most [m/2] + 1 if n + g is odd and at most [(m + 1)/2] if n + g is even, where

m = min(g, n − g − 1).

Proof. According to Lemma 5.5, the two bush graphs Γ∗(s, g, n) and Γ∗(s − 1, g, n) can be
joint by an isoperiodic deformation if s > 0 and s + g + n odd. Now it suffices to count
parameters to see that the number of inequivalent two bush graphs is at most [(m+ 1)/2]

when n + g is even and [m/2] + 1 when n + g is odd. �

In order to prove Lemma 5.5 and Theorem 5.6 we give some preparatory material on
the isoperiodic deformations.

5.2 Useful isoperiodic deformations

In this preparatory section, we describe useful isoperiodic deformations of a graph as-
sociated to hyperelliptic Riemann surfaces M∞ with a pair of marked points ∞± in
involution.

Rolling: Suppose that the graph Γ has exactly two disjoint vertical components Γ1

and Γ2. The latter are connected by the only horizontal component containing exactly
two edges meeting at the saddle point of the width function as left of Figure 7. We call
such simple horizontal component a cord.

The following deformation of Γ, called rolling and pictured in Figure 7, is isoperiodic.
The cord is fixed while both vertical components rotate as rigid bodies in the same
direction so that the meeting points of the cord with both vertical components move
along the boundaries of Γ1 and Γ2 with equal speed. Alternatively, we keep one of the
vertical components static, say Γ2 which we now call the core component. The cord
goes around the core and drags the other vertical component Γ1 which at a time rotates
with respect to the cord in the opposite direction so that the equality of velocities of the
contact points again holds. Essentially this deformation is the same as that in Section 4.5
however the parameter δh of the deformation is no longer small.
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Figure 7: Rolling the vertical component Γ1 around the core component Γ1. The dotted
lines show the intermediate positions of the chord.

Remark 5.8. The rolling of a pendent vertical component of the graph Γ around the rest
of the graph may be defined in a more general case. For simplicity in this paper we do
not use any deformations which lead to the collision of different horizontal components
of the graph. The collision of this type leads to a more deep change in combinatorial
structure of the graph Γ, see e.g. Chapter 4 of [Bog12] and [Bog23] for the analytical
aspects of such collision.

Attaching and Detaching: Given a graph Γ as in the rolling procedure, the cord may
be contracted when it reaches some point V at the boundary of the core graph Γ2 during
rolling. This procedure is called attaching of Γ1 at the point V on the core vertical
graph. Note that if the cord connects two branch points, like in the middle of Figure 7,
the procedure leads to a nodal curve M and it is prohibited. The inverse procedure of
inserting a cord at a vertex V of a vertical subgraph will be referred as a detaching.

Pumping: Given a graph Γ with a pendent vertical segment [V1,V2] = Γ
1 and a core

graph Γ2. We can roll Γ1 until the cord passes through a branch point of Γ2 as pictured
left of Figure 8. We can transfer a positive weight from Γ1 to the core component by the
following pumping construction. We first contract the cord as in the middle of Figure 8
and then again insert it in another way as right of Figure 8.

Note that pumping mass is impossible if the cord simultaneously passes through two
branch points: one on the pendent vertical segment and the other on the core graph, see
in the middle of Figure 7. As observed before, in this case contracting the cord brings
us to a nodal curve.
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Figure 8: Pumping mass from a pendent vertical segment [V1,V2] = Γ
1 to the core

graph Γ2.

5.3 Proof of Lemma 5.5

Starting with the two bush graph, we detach (g − s) pairs of consecutive little ~ = 1/2
twigs from their root. The graph after detaching the first pair is shown in the left of
Figure 9. We do the same for the pairs of consecutive big ~ = 1 twigs and obtain the
graph in the right of Figure 9. Finally it suffices to ’rotate’ each horizontal segment
counterclockwise to obtain the linear graph. The intermediate positions of horizontal
components are indicated by dotted/dashed lines on the same Figure 9 on the right.

2

1

1
2

Figure 9: The two Bush form Γ∗(s, g, n) with s = 2 and g = 3 just after detaching the
first pair of small twigs and its deformation into the standard line form Γ(s, g, n). The
numbers designate the heights of the edges.

For the deformation from the two bush graph Γ∗(s, g, n) to Γ∗(s − 1, g, n) we detach
a bunch of (g − s) pairs of neighbouring twigs from the small bush, roll the bunch and
attach it to the midpoint of neighbouring twig of the large bush provided s > 0 as shown
on the left of Figure 10. We obtain s − 1 twigs of unit height to the right of the new
small bush and s + 1 twigs of ~ = 1 to the right counted from the root of the large bush.
Now we detach a couple of neighbouring unit height twigs from the larger part of the
large bush, roll the ~ = 2 pendent vertical segment and attach it to the endpoint of the
tail. Since the height of the tail is even we get the graph in the right of Figure 10. A
unit height edge incident to the endpoint of the tail may be detached, rolled toward the
small bush and attached to its root. Thus we obtain the standard graph Γ∗(s − 1, g, n).
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even ~ even ~

Figure 10: An isoperiodic transformation between the two bush graphs Γ∗(s, g, n) and
Γ
∗(s − 1, g, n) when s + g + n is odd.

5.4 Proof of Theorem 5.6

Let Γ(M) be a weighted graph associated to a Riemann surface M of genus g > 0
corresponding to Equation (PA) with a primitive solution of degree n ≥ g + 1. We prove
that Γ(M) may be isoperiodically deformed to the two bush graph Γ∗(s, g, n) for some
s = 0, 1, . . . ,m∗, where m∗ := min(g − 1, n − g − 1).

The proof splits into several consecutive steps:

(1) Collapsing of the horizontal component of the graph to obtain a purely vertical graph.

(2) Detaching the vertical segment of minimal possible length ~ = 1.

(3) Bringing the core graph to the standard form by recursion on the genus g.

Stage 1: obtaining a purely vertical graph. Let Γ(M) be any graph satisfying the hy-
pothesis of Theorem 5.6. The elimination of its horizontal component may be achieved by
linearly decreasing to zero the values of the width function W(V) at all vertices V of the
horizontal subgraph. The only drawback of this deformation is that some branchpoints
may collide in the final instant of the deformation. To prevent it we may preliminary
"rotate" every horizontal component of the graph by shifting all its points of intersection
with the vertical subgraph by the same small value δh and in the same direction to avoid
passing through the branchpoints. An example of the rotation is shown in Figure 11. Af-
ter the contraction of its horizontal component, the graph is composed of vertical edges
only.

Stage 2: creating a pendent segment of height ~ = 1. Let us first show that there
exist two hanging edges neighbouring with respect to the cyclic order around some
vertex V of the graph. Indeed, take any vertex L of the graph Γ. Choose any vertex V1

of Γ at the maximal path length from L (i.e. the number of edges in the path joining
them). This is necessarily a hanging vertex of Γ and the previous vertex V in the path
[L,V1] on the graph is at distance one less from L. The degree d(V) = d (V) > 1 since
g > 0, moreover d(V) , 2 due to Property (T3) of admissible graphs, hence the node V

is joined to yet another vertex V2 at the same distance from L as V1. This vertex V2 is
hanging too, so the edges joining V to V1 and V2 are the desired ones.
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Figure 11: Clockwise rotation of a component of Γ , new position of the horizontal
component is dashed.

We are going to create a pendent vertical segment of minimal height ~ = 1 using
the two transformations of rolling and pumping. Detach from the rest of the graph the
vertical segment [V1,V2] := Γ1 obtained above. Then roll it around the core graph Γ2 and
pump its mass whenever possible. Since the height of the segment is always an integer
it cannot diminish ad infinitum. Hence it stabilizes at some integer l ≥ 1. If l > 1, then
all ~-distances between neighboring branchpoints on the boundary of the core graph are
divisible by l and hence all the periods of dηM lie in the coarse lattice corresponding to
the integer n/l. This would mean that the solution of degree n of Equation (PA) is not
primitive.

This pendent vertical segment of height ~ = 1 is called the catalyst. We can roll it
to any convenient place of the rest of the graph where is does not interfere with further
manipulations. In particular, for g = 1 we can attach it to the core graph to obtain the
two bush graph Γ∗(0, 1, n).

Stage 3: Induction Step for g ≥ 2. Let us consider the core graph Γ2 obtained after
detaching the catalyst as a separate graph equipped with the present ~ heights of vertical
edges. The graph Γ2 corresponds to a Pell-Abel equation admitting degree n − 1 solution.
Once the solution is primitive, we bring the graph to the two bush form Γ∗(s, g − 1, n− 1)
by the induction hypothesis. Then we roll the catalyst toward the smaller bush and
attach it at its root. Thus we obtain Γ∗(s, g, n) with parameter s in the admissible range
of values.

Suppose now that the Pell-Abel equation corresponding to the core graph Γ2 admits a
primitive solution of smaller degree n′ = (n− 1)/l for some integer l ≥ 2. By the induction
hypothesis, Γ2 may be isoperiodically transformed into a two-bush graph Γ∗(s, g − 1, n′)
which however uses another scale for the weights of the edges. To return to our initial
units we should multiply all the heights of this graph by the integer factor l = (n − 1)/n′.

Recall that the catalyst of unit height is joined to the rescaled two bush core graph
by a cord. We attach the catalyst to a hanging twig of the smaller bush (they exist in
the worst case s = g − 1) at the distance ~ = 1 ≥ l/2 from the endpoint. Then we detach
the ~ = 2 vertical segment (composed of the catalyst and part of the small bush twig)
from the graph. The procedure is allowed even in the worst case l = 2. In that case the
catalyst is attached to the root of the small bush, which is not a branch point.

We claim that the remained core graph Γ2
′
corresponds to Equation (PA) admitting
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primitive solution of degree n − 2. Indeed, the ~ distances between the branchpoints
along the boundary of Γ2

′
are all integer and include the coprime numbers l and l− 1 (on

the small bush). Now the induction step may be applied again and we replace the core
graph Γ2

′
by the two bush form Γ∗(s, g − 1, n − 2). The pendent segment of height ~ = 2

may be attached by its midpoint to the obtained two-bush form either

(i) at the root of the large bush, as pictured left of Figure 12, or

(ii) at the tip of the large bush twig (this happens only when s > 0) as shown in the
upper left picture of Figure 13.

Case (i): We detach a bunch of (g − s− 1) pairs of twigs from the small bush, roll them
and attach to midpoint of the nearest twig of the large bush, as illustrated in the right of
Figure 12 where the dashed curves show the final position of the horizontal component.
Thus we obtain the graph Γ∗(s+1, g, n). Note that s+1 is an admissible value of parameter
for given g and n when s ≤ min(g − 2, n − g − 2).

Figure 12: The induction step in case (i) for g = 5 and s = 2.

Case (ii): We detach one of the unit height twigs at the tip of the large bush twig, roll
it around the core graph and attach to the root of the small bush as shown in the right
top picture of Figure 13. Next, we detach the union of the tail (which may be of height 0)
of two-bush graph and the neighbouring ~ = 2 edge. We roll it along the neighboring
twig of height ~ = 1 as pictured bottom left of Figure 13. Finally we attach it to the core
graph at the root of the large bush as pictured bottom right of Figure 13. The root of
the larger bush is now a branch point, so one twig of this bush may be detached and
replanted to the smaller bush as we just did. We obtain the two bush graph Γ∗(s− 1, g, n).
This completes the proof.

Remark 5.9. A proof without recursion is available too, but it is a bit longer and the
deformations are more involved.
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Figure 13: The induction step in case (ii) for g = 5 and s = 2.

6 Isoperiodic invariants

In this section, we show that the genus g hyperelliptic Riemann surfaces associated to
Pell-Abel equations admitting a primitive solution of degree n corresponding to inequiv-
alent linear graphs Γ(s, g, n) described in Section 5.1 do live in different components
of A

n
g . To this end we introduce two global invariants of the isoperiodic transformation

and compute it for all graphs Γ(s, g, n).
The first invariant is based on the partition of the degree of the polynomial D(x)

of Pell-Abel equation (PA) into two summands. For this reason we call it the degree

partition invariant. Its elementary construction is given in Section 6.1. We describe a
way to compute it using graphs and show that each admissible partition is realized by
a unique linear graph Γ(s, g, n). This completes the proof of Theorem 1.2 and the reader
could stop there.

The other invariant described in Section 6.2 possesses a much more rich geometric
content: it is related to to braids which describe the motions of unordered branching sets
E in the plane without collisions of any individual branchpoints. Hence this invariant is
referred as the braid invariant. The construction of this invariant is far less elementary,
nonetheless numerically it coincides with the degree partition invariant. However it gives
a more deep immersion into the geometry of the problem. No doubt, it will be used for
further research in the topic.
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6.1 Degree partition invariant

The value of a solution P of Equation (PA) at a zero e ∈ E of the polynomial D may be
either +1 or −1. Therefore, the set E of zeroes of D is split into two subsets E

±. Since
we cannot globally distinguish between solutions P and −P we consider the cardinalities
of those sets as an unordered partition of |E| = deg D := 2g + 2. In particular we may
assume that

|E−| ≤ g + 1 ≤ |E+| .
The degree partition invariant of D ∈ A

n
g is the unordered pair (|E−|, |E+|) computed for

the primitive solution ±P(x).
This invariant is easily computable from the graph Γ of the associated curve. The

~-distance between any two branchpoints of the curve along the boundary of the graph

should be integer. It may be either even or odd depending of whether those branchpoints

lie in the same group E
± or in different ones. To compute the value of the solution P

at any branchpoint es we use Formula (5). The integral of the distinguished differential
between e1 and es has been already computed in section 4.4.2 in terms of weights h: it
is the sum of all vertical weights of the edges on a path between e1 and es along the
boundary of Γ. Now by substituting the heights ~ of the edges instead of their weights h,
we get the justification of the above rule.

Lemma 6.1. The degree partition invariant (|E−|, |E+|) of D ∈ A
n

g having a primitive

solution P of degree n satisfies:

1) |E±| > 0,

2) |E±| ≤ n,

3) the parity of |E±| is equal to the parity of n.

Proof. 1) In the graph description, the fact that |E−| = 0 happens exactly when all
boundary ~ -distances between the branchpoints are even. Dividing all the heights of the
graph by 2, we get a solution P of degree twice less.

2) A nontrivial polynomial has at most its degree number of roots.
3) The set E of roots of D is the set of x ∈ C where P takes value ±1 with odd

multiplicity. �

Finally, we compute the degree partition invariant of the linear graphs.

Example 6.2. The degree partition invariant of the linear graph Γ(s, g, n) has the fol-
lowing smaller element:

|E−| = g − s + α , (16)

where α = (s + g + n) mod 2 ∈ {0, 1}. We note that all linear graphs Γ(s, g, n) correspond
to different partitions (and therefore belong to different components of A

n
g ) outside the

cases explicitly described in Lemma 5.5.

Remark 6.3. One can check by direct calculation that the number of invariants is exactly
the number a(g, n) of components in Theorem 1.2. This completes its proof.

25



To conclude this subsection, we compute the partition invariant of some Riemann
surfaces defined over Q.

Example 6.4. In [Pla14, p. 30] it is shown that the Pell-Abel equation (PA) with the
polynomial

D(x) = x6 + 6x4 + 33x2 + 24

has the primitive solution

P(x) =
1

24
x9 +

3

8
x7 +

9

4
x5 + 6x3 + 9x and Q(x) =

1

24
x6 +

1

4
x4 + x2 + 1 .

Now it is easy to check numerically that the vector of values of P at the roots of D

contains 3 times +1 and 3 times −1. Hence D belongs to the component of degree
partition invariant (3, 3).

6.2 Braid invariant

We know what does the invariance of periods mean for small deformations of the
branching set E, see e.g. the discussion at the end of Section 3. For large deformations,
we should somehow identify the integration cycles on remote surfaces M(E). This is
done via the parallel transport of cycles by the Gauss-Manin connection (see [Vas95,
Section I.1] or [Bog12, Chapter 5]).

Suppose that we move the branchpoints and simultaneously distort a cycle C so that
the branchpoints never cross its projection to the x-plane. In this way we transport
the cycle along some path τ in the space H̃g of hyperelliptic Riemann surfaces with a
pair of marked point at infinity (identified with the space of complex monic square free
polynomials D(x) of degree 2g + 2). The resulting cycle belongs to the Riemann surface
corresponding to the end of the path and we denote it as C ·τ, whereas C itself belongs to
the Riemann surface at the beginning of the path. This action of paths on the homology
spaces of the Riemann surfaces in H̃g is associative: C · (τ · σ) = (C · τ) · σ provided all
products are correctly defined, e.g. the end of τ is the beginning of σ, etc.

6.2.1 Braids and isoperiodic deformations

Fix an affine hyperelliptic Riemann surface M1 whose branchpoints e1 < e2 < · · · < e2g+2

are real. We introduce the standard homology basis C1,C2, . . . ,C2g+1 of H1(M1,Z), where
the projection of Ci to the x-plane encircles ei and ei+1, as pictured in the left panel of
Figure 14. Any Riemann surface M2 of the same genus g with purely real branchpoints
may be connected to M1 by a path σ in the space H̃g such that all the branchpoints move
along the real axis during the deformation. The transport of the standard homology basis
for the starting surface along σ is the standard basis for the ending surface. Note that σ
usually does not conserve any period.

Suppose an isoperiodic path τ in H̃g connects M1 to M2, both with real branchpoints
(intermediate Riemann surfaces of the path may have general branchpoints). Let dη j be
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the distinguished differential on M j defined in Section 2. For every cycle C j ∈ H1(M1,Z)

the equalities hold:

∫

C j

dη1 =

∫

C j ·τ
dη2 =

∫

C j ·(τ·σ−1)·σ
dη2 =

2g+1
∑

r=1

B jr(τ · σ−1)
∫

Cr ·σ
dη2 . (17)

The path β := τ · σ−1 here is a loop in the space H̃g with the base point M1 and it is
represented by a braid β ∈ Br2g+2 on 2g + 2 strands. The transport of cycles along the
loops by the Gauss-Manin connection has nontrivial holonomy. Given a standard basis
of H1(M1,Z), the holonomy is given by the matrix B(β) = ||B jr|| ∈ SL2g+1(Z). It is easy to
calculate this matrix for an elementary braid βr corresponding to Dehn half twist [Bir75]
interchanging the branchpoints er and er+1 counterclockwise for r = 1, 2, . . . , 2g + 1 (see
right panel of Figure 14):

(C1,C2, . . . ,C2g+1) · βr = (. . . ,Cr−1 −Cr,Cr,Cr+1 +Cr, . . . ). (18)

The braid βr changes only two homology cycles Cr−1 and Cr+1. This matrix representation
of braids group is known as the reduced Burau representation Bt (see Section 2 of [GG06])
evaluated at the parameter t = −1.

e j+1e j

C j−1 C j+1
C jC j−2 C j+2

β j

C′
j−1

C′
j+1

C jC j−2 C j+2

Figure 14: The standard homology basis for a purely real Riemann surface M on the
left and the transport of basic cycles under the Dehn half-twist on the right. The slits
pairwise joining the branch points are pictured in grey.

It follows from this discussion that the naturally ordered periods of two linear graphs
connected by an isoperiodic deformation lie in the same orbit of the representation B(β).
However the braid group is infinite and the fact that two vectors belong to the same
orbit is difficult to check. For this reason we consider a coarser invariant. We consider
the binary arrays of length 2g+ 1. Obviously, the Burau representation modulo 2 acts on
such binary strings too, but any orbit is now finite. We will be interested in the orbits
of the binary arrays of the form

(~1~2~3 . . . ~2g+1) mod 2, with ~r :=
n

2πi

∫

Cr

dηM ∈ Z (19)

being the rescaled periods of the distinguished differential, r = 1, 2, . . . , 2g + 1. Note that
for totally real curves M all entries ~r with even indexes r are zeros and the total sum
of ~r is n.

Our immediate goal is to learn how to distinguish orbits of Burau representation
reduced mod 2 on the binary arrays.
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6.2.2 Orbits of the Burau action reduced modulo 2

Consider the following generating set in Z2g+1
2 :

v1 = (1000000 . . . 0000);

v2 = (1100000 . . . 0000);

v3 = (0110000 . . . 0000);

v4 = (0011000 . . . 0000);
...

v2g+1 = (000000 . . .0011);
v2g+2 = (000000 . . .0001).

(20)

The only nontrivial linear relation between those vectors is
∑2g+2

r=1 vr = 0. An elementary
braid βr acting on this set via the reduced Burau representation modulo 2 behaves like
a transposition of two neighbouring elements:

vrB(βr) = vr+1, vr+1B(βr) = vr, and v jB(βr) = v j, when j , r, r + 1 .

Therefore the braid group acts as a permutation group on the elements vi of the generating
set. It follows that the length Q of the shortest decomposition (there are exactly two of
them) of the elements v ∈ Z2g+1

2 into the generators vr with r = 1, . . . , 2g + 2 is the only
invariant of our braid action on binary strings. This number Q is the braid invariant of
the array. Note that it takes value in {1, 2, . . . , g+ 1} and distinguishes the orbits of action
of Burau representation of braids on binary arrays.

Remark 6.5. Looking more carefully at its action on the set of generators vi, it can
be shown that the group generated by the reduced Burau matrices reduced mod 2 in
SL2g+1(Z2) is isomorphic to the symmetric group on 2g + 2 elements.

6.2.3 The braid invariant of standard forms

Let us calculate the value of the braid invariant Q for the hyperelliptic curves with
associated linear graphs Γ(s, g, n) for s = 0, . . . ,m∗ where m∗ := min(g− 1, n− g− 1) (recall
Remark 5.2 for the justification of the definition of m∗). The binary array corresponding
to the latter graph is Wg−s, where

Ws = (1010101 . . . 0101000 . . . 000b), where b(s) := (n + s) mod 2 , (21)

with exactly s entries 1 in the first 2g places. These vectors satisfy the recurrence relation
Ws = v2s−1 + v2s−2 +Ws−2 which together with the initial conditions W1 = v1 + bv2g+2 and
W2 = v2 + v3 + bv2g+2 gives us the value of the braid invariant of the vectors Ws. Indeed,
let α := (s + n + g) mod 2 with values 0 and 1, then the invariant is

Q(Wg−s) = g − s + α ≤ g + 1. (22)

Hence, the values of Q coincide for the equivalent graphs Γ(s, g, n) and Γ(s− 1, g, n) when
g + n + s is odd and are different for all the other graphs.

We conclude by comparing the braid invariant with the degree partition invariant.
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Proposition 6.6. The braid invariant Q of the vector of ~-heights of the linear graph

coincide with the number |E−| of the degree partition invariant (|E−|, |E+|).

Proof. It suffices to compare Formula (22) with Formula (16). �

7 k-differentials on hyperelliptic Riemann surfaces

In this last section, we prove Corollary 1.6. We begin by recalling some known facts on
k-differentials and their moduli spaces. More information can be find in [BCG+19].

Given integers g ≥ 0 and k ≥ 1, a k-differential ξ on a genus g Riemann surface M is a
non-zero section of the kth tensorial product of the canonical bundle KM . A k-differential
is said to be primitive if it is not the power of a k′-differential with k′ < k.

Given a partition µ = (m1, . . . ,mn) of k(2g − 2), we consider the moduli spaces of k-
differentials whose orders of zeros are equal to m1, . . . ,mn. This moduli space is called a
stratum of k-differentials of type µ and is denoted ΩkMg(µ). The sublocus parametrizing
the primitive k-differentials of type µ is denoted by ΩkMg(µ)prim.

We now compute the number of the connected components of the restriction of the
strata of k-differentials with a unique zero to the hyperelliptic locus.

Proposition 7.1. For g ≥ 2, the number of connected components of the restriction of

Ω
kMg(k(2g − 2))prim to the hyperelliptic locus is

•

[

g−1
2

]

if k = 2;

• 1 if k = 3 and either g = 2 or g = 3;

• g/2 if k ≥ 4 and g ≥ 2 are even;

• g/2 + 1 if either g = 2 and k ≥ 5 is odd, or k ≥ 3 is odd and g ≥ 4 is even;

• (g + 1)/2 if g ≥ 3 is odd, k , 2 and either g or k is not equal to 3.

Proof. A primitive k-differential on a hyperelliptic genus g Riemann surface with a
unique zero of order 2k(g − 1) is equivalent to a primitive solution of Equation (PA) of
degree n = k(g − 1). Indeed, consider a solution of degree n of the Pell-Abel equation.
According to point 3) of Remark 2.2, there exists a hyperelliptic Riemann surface M∞
such that

n∞+ − n∞− ∼ O , (23)

where O is the trivial bundle of M∞. Moreover, by primitivity of the solution this
equation is not satisfied for any n′ < n. Since we know that

(g − 1)∞+ + (g − 1)∞− ∼ K , (24)

where K is the canonical bundle of M∞, we obtain

2n · ∞+ = kK . (25)
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Therefore ∞+ is the unique zero of a k-differential ξ. The fact that n is minimal for this
property implies that ξ is a primitive k-differential in the locus ΩkMg(2k(g − 1))prim.

Conversely, consider a primitive k-differential (M, ξ) in the hyperelliptic locus of
Ω

kMg(2k(g − 1))prim. The zero z of ξ satisfies Equation (25). Now it suffices to subtract k

times Equation (24) to this equation to obtain Equation (23). Recall that the degree of
the solutions associate to the point z forms a semi-group generated by one element. To-
gether with the primitivity of the k-differential this implies the primitivity of the solution
associated to Equation (23).

Hence, the components are in one-to-one correspondence with components of primi-
tive solutions of Pell-Abel equation of degree n = k(g − 1). Note that g > n − g − 1 if and
only if k <

2g+1
g−1 . For g ≥ 3, this happens if and only if k = 2 or k = g = 3.

Since for g = 2 we obtain a bijection between the components of ΩkM2(2k)prim and
the components of primitive solutions of Pell-Abel of degree k, we obtain the result in
genus 2 directly from Theorem 1.2.

So if k = 2, we have min(g, 2(g− 1)− g− 1) = g and using Theorem 1.2, we obtain that
the number of connected components is equal to

[

(g − 1)/2
]

. If g = k = 3, the restriction
of the stratum Ω3M3(12)prim to the hyperelliptic locus is connected. If we are not in one
of the previous cases, then the number of components is

[

g

2

]

+ 1 , when kg − k + g is odd, and
[

g + 1

2

]

, when kg − k + g is even.

The second case occurs when both k and g are even and the first case otherwise. This
concludes the proof of Proposition 7.1. �

Since Riemann surfaces of genus 2 are hyperelliptic, this implies the first part of
Corollary 1.6. Moreover this shows that parity invariant of [CG22, Theorem 1.2] classifies
the connected components of ΩkM2(2k)prim. Recall that the parity invariant is given by
the parity of the spin structure of the canonical cover associated to a k-differential (see
Section 5 of [CG22] for a detailed discussion). We now relate the parity invariant with
the degree partition invariant, proving the second part of the corollary.

Proposition 7.2. Let k ≥ 5 be an odd number. The component of ΩkM2(2k)prim with odd,

resp. even, parity corresponds to the component of invariant (1, 5), resp. (3, 3). Moreover,

the component of ΩkM2(2k)prim is odd if and only if there exists a Weierstraß point such

that its difference with the zero of the k-differential is a k-torsion.

The proof relies on the technology of degenerations that were introduced in [BCG+19]
and studied in Sections 2 and 3.2 of [CG22]. It is recommended but not necessary to have
some familiarity with these notions: we will only use the notion of twisted k-differentials
which appears has limit of k-differentials.

Proof. Let k be an odd integer ≥ 5. Let (M, ξ) ∈ ΩkM2(2k) be the primitive k-differential
whose unique zero is z such that the graph associated to M (as explained in Section 4)
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is linear. It is shown in proof of [Gen22, Theorem 3] that there is a Weierstraß point
W ∈ M such that the difference W − z is a k-torsion if and only if the linear graph has
heights (2, 2, k−2). The degree partition invariant of this graph is (1, 5) (and of course W

is the preimage of the unique e ∈ E
−).

Let (M, ξ) ∈ ΩkM2(2k) be a primitive k-differential of odd parity and denote by z

its zero. It suffices to prove that there exists a Weierstraß point W such that W − z is
k-torsion.

We start we a twisted k-differential (M0, ξ0) obtained by gluing the k-th power of
an holomorphic differential on a genus 1 Riemann surface (M1, ω1) to the pole of a
k-differential (M2, ξ2) in ΩkM1(2k,−2k)prim whose k-residue vanishes (see Lemma 5.9
of [CG22] for the existence of such k-differential). We denote by z the zero of ξ2. Remark
that the Jacobian of the underlying singular curve M0 is the product of the elliptic curves.
This twisted k-differential (M0, ξ0) and its Jacobian are sketched in Figure 15.

W1

W2

W3

W4 W5 W6
N

z

M1

M2

Figure 15: The Jacobian of M0.

This twisted differential is smoothable in the stratum ΩkM2(2k). The limits of the
Weierstraß points of any such smoothing are the 2-torsion points modulo the node N.
Denote by W1,W2,W3, resp. W4,W5,W6, the 2-torsion points on M1, resp. M2. We
consider the 2-torsion points on M2. Let v1, v2 ∈ C such that M2 ∼ C/(Zv1 ⊕ Zv2) and
suppose that the node is the image of 0 ∈ C. The coordinates of z are

(

n1
2k
, n2
2k

)

where
pgcd(n1, n2, 2k) ∈ {1, 2} is the rotation number of ξ2 (see [CG22, Theorem 3.12]). Hence,
the differences Wi − z are given by

(

n1−kδ1
2k
, n2−kδ2

2k

)

with (δ1, δ2) ∈ (Z/2Z)2 \ {(0, 0)}. The
orders of torsion of these differences are

2k

pgcd(n1 − kδ1, n2 − kδ2, 2k)
.

Suppose that the rotation number pgcd(n1, n2, 2k) of η2 is 1. If both δi have the same
parity than ni, then both ni − kδi are even. Hence there exists a 2-torsion point on M2,
given by kz ∈ M2, such that its difference with z is k-torsion. Finally, Lemma 5.6 of
[CG22] shows that the parity of the k-differentials obtained by smoothing this twisted
k-differentials is odd. �
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